Chapter 3 Discrete Exterior
نویسندگان
چکیده
We present a theory and applications of discrete exterior calculus on simplicial complexes of arbitrary finite dimension. This can be thought of as calculus on a discrete space. Our theory includes not only discrete differential forms but also discrete vector fields and the operators acting on these objects. This allows us to address the various interactions between forms and vector fields (such as Lie derivatives) which are important in applications. Previous attempts at discrete exterior calculus have addressed only differential forms. We also introduce the notion of a circumcentric dual of a simplicial complex. The importance of dual complexes in this field has been well understood, but previous researchers have used barycentric subdivision or barycentric duals. We show that the use of circumcentric duals is crucial in arriving at a theory of discrete exterior calculus that admits both vector fields and forms. 3.
منابع مشابه
Cs 468 Notes: Differential Geometry for Computer Science
1. Overview: 4/1/13 1 2. Curves: 4/3/13 3 3. Discrete Curves: 4/8/13 5 4. The Definition of a Surface: 4/10/13 8 5. Surface Geometry: 4/15/13 9 6. Discrete Surfaces: 4/17/13 11 7. Extrinsic Curvature: 4/22/13 13 8. Computing Curvature: 4/24/13 14 9. Intrinsic Geometry: The Induced Metric and Geodesics : 4/29/13 17 10. 5/1/13 19 11. Covariant Differentiation: 5/6/13 19 12. Discrete Laplacians: 5...
متن کاملExterior - Interior Duality for Discrete Graphs
The Exterior-Interior duality expresses a deep connection between the Laplace spectrum in bounded and connected domains in R, and the scattering matrices in the exterior of the domains. Here, this link is extended to the study of the spectrum of the discrete Laplacian on finite graphs. For this purpose, two methods are devised for associating scattering matrices to the graphs. The Exterior -Int...
متن کاملDiscrete Exterior Calculus for Variational Problems in Computer Vision and Graphics
This paper demonstrates how discrete exterior calculus tools may be useful in computer vision and graphics. A variational approach provides a link with mechanics.
متن کاملar X iv : m at h / 05 08 34 1 v 1 [ m at h . D G ] 1 8 A ug 2 00 5 DISCRETE EXTERIOR CALCULUS
We present a theory and applications of discrete exterior calculus on simplicial complexes of arbitrary finite dimension. This can be thought of as calculus on a discrete space. Our theory includes not only discrete differential forms but also discrete vector fields and the operators acting on these objects. This allows us to address the various interactions between forms and vector fields (suc...
متن کاملA Primal-to-Primal Discretization of Exterior Calculus on Polygonal Meshes
Discrete exterior calculus (DEC) offers a coordinate-free discretization of exterior calculus especially suited for computations on curved spaces. We present an extended version of DEC on surface meshes formed by general polygons that bypasses the construction of any dual mesh and the need for combinatorial subdivisions. At its core, our approach introduces a polygonal wedge product that is com...
متن کامل